
Zero-eigenenergy state of the Aubry model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L709

(http://iopscience.iop.org/0305-4470/20/11/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) L709-L713. Printed in the UK 

LElTER TO THE EDITOR 

Zero-eigenenergy state of the Aubry model 

K A Chao 
Department of Physics and Measurement Technology, University of Linkoping, S-58183 
Linkoping, Sweden 

Received 2 April 1987 

Abstract. The Aubry model with site energy V cos(@ + c p )  is analysed. We have proved 
that the zero-eigenenergy state (ZES) exists only if the system contains an odd number of 
sites and if cp = it?. The eigenfunction of the ZES has a definite symmetry. In the vicinity 
of the critical value V = 2 ,  the characteristic features of this wavefunction have been 
demonstrated. 

The one-dimensional Aubry Hamiltonian (Aubry 1978) 
OD 

H ( Q ,  c p ) =  c [Vcos(Q~+cp)at,an+t(at,+la"+at,-la")l (1) 
n = - a  

contains two incommensurate periods when Q is incommensurate to T. Though some 
important aspects of the model are well understood, this is not so for the zero- 
eigenenergy state (ZES) of H (  Q, cp). Recently the ZES has been investigated by several 
authors (Bulka 1981, Avron and Simon 1982, Sokoloff 1984, Ostlund and Pandit 1984, 
Zdetsis et a1 1986, Liu 1987) with various approaches. However, the characteristic 
features of the ZES still remain unclear. Since it is difficult to derive the eigenfunction 
of the ZES analytically, one must turn to a numerical solution. However, boundary 
conditions cannot be imposed on a system with incommensurate periods. Therefore, 
in principle one must consider an infinite system, which is of course an impossible 
task. Almost every author believes that his numerical study on the ZES is reliable if 
the system he considers is sufficiently long. In this letter we will first show that the 
ZES exists only if the phase cp is properly chosen so that the Hamiltonian H( Q, cp) has 
the required symmetry. Otherwise the ZES does not exist at all, regardless of the size of 
the system. With the correct choice of the phase cp, the eigenfunction of the ZES will 
then be derived. 

Let us first study the role of the phase cp. The eigenenergy E ( Q ,  c p )  of the Hamil- 
tonian H (  Q, cp) is obtained by solving the determinantal equation 

. . .  
t Vcos(-Q+cp) t 

- E ( Q ,  cp) 
t v cos(cp) t 

- E ( Q ,  cp> 
t VCOS(Q+cp) t 

- E ( Q ,  cp) 
. . .  
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= 0. 
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Here the rows and columns are labelled from -a to +a according to the value of n. 
First we multiply the 2pth row and the ( 2 p + l ) t h  column by -1, where p = 
-00,.  . . , -1,O, 1, .  . . ,00. Next we exchange the vth row with the -vth row, as well 
as the vth column with the -vth column, where v = 1,2 , .  . . , CO. Then (2) becomes 

t - v cos( Q + cp ) t 

- v cos( (0) t + E ( Q ,  cp) 
t 

+ E ( 1 - v cos( - Q + cp ) t 

=o. (3)  

Equations (2) and (3) have the same set of eigenenergies. If the ZES exists, then (2) 
and (3) can be expanded in powers of t / V  as z := ,X , (Q ,cp ) ( t /V) '"  = O  and 
Z:=, X ,  (- Q, cp)( - I/ V)" = 0, respectively. Since the value of t /  V is arbitrary, we have 
the condition X,(Q, cp) = (-l),X@(-Q, cp). The explicit form of X,(Q, cp) is very 
tedious. However, it can be shown that the above condition implies that, for E (Q, cp) = 0 
and t / V  arbitrary, the two determinants in (2) and (3) are identical. Since the 
dimensions of both determinants are infinite, we can set n = 0 at any diagonal element 
in (2) and set n = O  at any other diagonal element in (3). Consequently, if the ZES 

exists, the necessary condition is 

(4) 
where p is an arbitrary integer. Therefore cp can only take the values 

( 5 )  

v cos(-@+ cp) = - v cos[(n - p ) Q  + cp] 

cpo = f p Q  f f ~ .  
By a shift of the origin n = 0, it is easy to see that the Hamiltonian (1) associated 

with any even p is equivalent to the Hamiltonian with cpo = - f ~ ,  and the Hamiltonian 
associated with any odd p is equivalent to the Hamiltonian with cpo = -$T -fQ. For 
cpo= -$T, the Hamiltonian can be rewritten as 
H(Q, -fT) = E o a ~ a o + t ( a ~ a l + a : a o + a ~ a ~ , + a ~ , u o )  

m 

+ [ V sin( Qn)(a;an - uL,,a-,,) 
n = l  

For those sites with site indices m s 0, we redefine the old mth site as the new ( m  - 1)th 
site. Hence, the sites are now labelled as n = -CO, . . . , -2, -1, 1,2, . . . , a. Equation 
(7) is then re-expressed as 

H(Q, -1x-&)=  t ( a ~ , a , + a : a - , ) +  { ~ s i n [ ~ ( n - f ) ] ( a t , u , - a l , a _ , )  

+ t(u:+lu" + a;un+l +at,-,a-, + utna-"J}. 

cc 

n = l  

(8) 
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Under the condition (4), we see from (2) and (3) that if E ( Q ,  cpo) is an eigenenergy 
of H(Q, pa), then - E ( Q ,  cpo) is also an eigenenergy of H(Q, q0). If cpo= -i.rr, the 
corresponding Hamiltonian ( 6 )  has an odd number of sites. Therefore, the total number 
of eigenenergies is odd and the ZES must exist. On the other hand, if cp0= -$=-;Q, 
the corresponding Hamiltonian (8) has an even number of sites. In this case, if the 
energy spectrum contains the zero eigenenergy then the zero eigenenergy must be at 
least doubly degenerate. However, the Hamiltonian (8) does not have the symmetry 
to cause such degeneracy. Consequently, the Hamiltonian (8) does not have the ZES. 
We have also performed a detailed numerical calculation to confirm this conclusion. 

To summarise the above analysis, the necessary and sufficient condition for the 
existence of the ZES is cpo= - f ~  in a system with an odd number of sites. The 
requirement of an odd number of sites is a topological condition and cannot be removed 
even if the number of sites approaches infinity. It is important to point out that this 
condition applies to any value of the ratio V / t .  

Now we assume that the above-mentioned condition is satisfied and study the 
wavefunction of the ZES of ( 6 ) .  The eigenstate of H(Q, - ;T )  can be created by the 
operator 

where the set of coefficients {f( E ) , }  satisfies the recursion relation 

f(E),+I =[(Vir) s in(Qn)-Elf(E)n -f(E)n-1. (10) 

For E = 0, we have f(O), = -f(O)-, and f(O), =f(O)-,= [( V / t )  sin Q]f(O), -f(O),. It 
can be easily proved by mathematical induction that 

f(012, =f(0)-2,= { ( V / t )  sin[(2n - 1)Q11f(O)*,-, -f(O)2,-2 

f(0)2,+1= -f(0)-2,-1= [( V l t )  sin(2nQ)lS(o)2, -f(0)2,-1. 

(11) 

(12) 

These symmetry properties of the ZES wavefunction have been used to check the 
accuracy of the following numerical results. 

To demonstrate the ZES wavefunction numerically, we set t = 1 as our unit of energy. 
Because of the symmetry relations (11) and (12), we only need to show half of the 
wavefunction in the region n d 0. Since the interesting region is around the critical 
value V/ r = 2, we will study three cases with V = 1.99, 2.0 and 2.01. For each value 
of V, we consider three values of Q = 0.8, 2.0 and 2.9. 

Figure 1 shows the wavefunctions for Q=O.8 in a finite system of 3001 sites. If 
we increase the size of the system, all wavefunctions retain their qualitative features. 
The insert for the case V = 2.01 illustrates the wavefunction around n = 0 in a large 
system of 100001 sites. 

Similar results for Q = 2.0, obtained with a system of 3001 sites, are plotted in 
figure 2. When we increase the size of the system, the characteristic features of the 
wavefunctions for V =  1.99 and V=2.0 remain the same. However, there is a drastic 
change of the wavefunction for V = 2.01. The insert shows the wavefunction in the 
region -5000 < n < 0 in a system of 100 001 sites. Further increase of the size of the 
system does not alter the wavefunction qualitatively. 

The most interesting case is shown in figure 3 for Q = 2.9. The plotted wavefunctions 
for V = 1.99 and V = 2.0 are derived with a system of 1001 sites. These two wavefunc- 
tions are similar and do not change their forms when the size of the system is increased. 
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Figure 1. Wavefunctions for Q = 0.8 in a system of 3001 sites. The insert shows part of a 
wavefunction in a system of 100 001 sites. 
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Figure 2. Wavefunctions for Q = 2.0 in a system of 3001 sites. The insert shows part of a 
wavefunction in a system of 100 001 sites. 
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Figure 3. Wavefunctions for Q = 2.9 in a system of 1001 sites (for V = 1.99 and V = 2.0) 
and in a system of 3001 sites (for V = 2.01). 

In a system of 1001 sites, the wavefunction for V = 2.01 is also similar to those plotted 
for V = 1.99 and V = 2.0. But with increasing size of the system, the wavefunction for 
V=2.01 begins to localise around the middle of the system. For a system of 3001 
sites, the localised wavefunction is shown in figure 3. 

Before closing this letter, we would like to make two remarks. First, Sokoloff (1984) 
has argued that the ZES must exist even for the phase cp = 0, because the energy band 
is symmetric about E = O .  We have shown here that such an argument is incorrect. 
To study the ZES, one must consider a system with an odd number of sites and set 
cp = -+T. Second, Ostlund and Pandit (1984) detected the strange influence of the 
phase cp on the divergence of the transfer matrix elements which they could not explain. 
The present work suggests that the phase cp plays a role in the symmetry property of 
the whole system. 

This work was financially supported by the Swedish Natural Science Research Council 
under grant no NFR-FFU-3996-136. 
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